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Abstract. Exact enumeration methods are used to study the distribution of units in self- 
avoiding polymer chains and rings on the FCC lattice. Estimates of the exponents 
characterizing the size dependence of the moments are derived and compared with those of 
the chain end-to-end distance distribution. Ratios of the different moment types are also 
studied and compared with the predictions of cluster theory. 

1. Introduction 

The self-avoiding chain, or walk, on a lattice has been the subject of numerous studies, 
both because of its application as a model of a polymer chain in dilute solution and for 
the possible connection to other problems of statistical mechanics (Domb 1969). The 
self-avoiding condition represents an attempt to simulate the excluded volume portion 
of the intrachain interaction. Polymer models which omit this or  any other kind of 
interaction between non-neighbouring chain units are Markovian and, consequently, 
are amenable to study by straightforward transfer matrix methods (Flory 1969); the 
incorporation of a long-range type of interaction such as the excluded volume renders 
these methods inapplicable. 

There have been two main approaches to the self-avoiding chain problem--exact 
enumeration (eg Domb 1969) and Monte Carlo (eg McCrackin er a1 1973). In the exact 
enumeration studies the configurational properties of short chains (generally of length 
1&20 links, depending on the lattice) are determined by exhaustive generation and, 
where the results are sufficiently smooth, they are extrapolated to provide the limiting 
long-chain behaviour. The Monte Carlo investigations are based on suitably generated 
samples of considerably longer (100-1OOO links) chains, here the need to resort to 
extrapolation is diminished because the chains are usually of sufficient length to display 
the limiting behaviour. The predictions of the two different approaches tend to agree 
remarkably well, lending support to the claim that it is possible to deduce many of the 
limiting properties by extrapolating the short-chain data. 

Less extensively studied by either exact or Monte Carlo methods are the properties 
of the self-avoiding ring polymer on a lattice. Rings are more difficult to study by Monte 
Carlo methods than chains because the attrition inherent in the process makes genera- 
tion of adequate samples of the larger rings very difficult (Kumbar and Windwer 1968). 
The important configurational property of the rings is the mean distribution of the 
individual units about their centre of mass-essentially the ‘shape’ of the ring. For 
chains it is again the shape which is of importance and, in addition, the mean distribution 
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of the distance between the end-points of the chain. In the exact enumeration studies 
techniques have been developed for simplifying the end-point calculations, and these 
have consequently progressed a good deal further than the shape calculations for 
which no comparable short-cut exists. A further consequence of this lack of a short-cut 
is that the study of the ring shape has been almost totally avoided. 

In this paper we report on exact enumeration studies of the shapes of self-avoiding 
chains and rings on the face-centred cubic (FCC) lattice. On account of the high co- 
ordination number (q = 12) one expects that the limiting behaviour should become 
apparent much sooner than for other, less closely packed lattices. Available work 
supports this contention; for example, the degree of convergence of the results from 
chains of up to fourteen links on the tetrahedral (q  = 4) lattice (Kumbar and Windwer 
1969) is similar to that from chains of up to about six links on the FCC. In our study the 
rings have been generated to twelve links, the chains to nine. 

2. Generation method 

We consider a chain of n links connecting n + 1 units of equal mass. The units are located 
at the sites of a regular lattice and the link length is the distance between nearest- 
neighbour sites. c, is defined to be the number of self-avoiding (no two units occupying 
any one lattice site) n-link chains which start out from any given site. Similarly, U ,  is the 
number of n-link (n-unit) self-avoiding rings (first and last sites coincide) which pass 
through a particular site. On the FCC lattice the c, have been tabulated as far as n = 12 
(Martin er a1 1967) and the U ,  to n = 14 (Sykes et al1972b). Further terms are known for 
other lattices, although the numerical values of the highest-order terms obtained tend 
to be smaller than their FCC counterparts. The large numbers involved are quite 
obviously impossible to  compute directly but, through use of a counting theorem (Sykes 
1961) and lattice symmetry, computational effort can be reduced substantially. 

The counting theorem for self-avoiding chains is based on the observation that, for a 
given chain, the addition of a further link is more likely to yield a new self-avoiding 
chain than a chain which visits one of its sites twice. I t  is therefore preferable to count 
the possible failures at  each stage, and this in turn leads to a recurrence relation for the 
c, in terms of graphs which are more readily counted than the chains. A similar simpli- 
fication is also possible for the self-avoiding rings (Sykes et al 1972b). 

The configurational properties of the chains are determined by the set {c,(s)l all 
possible s}, where c,fs) denotes the number of n-link chains with an average distance 
between the units and the centre of mass equal to s, and by {c,(r)l all possible r } ,  with c,(r) 
the number of chains with end-point separation r. For rings the quantity required is 
u,(s), the analogue of c,(s). The moments of the distributions of s and r for the chains are 

R,P,ch = c rPcn(r)/c, S,P,ch = c S P C , ( S ) / C ,  
r 5 

and for the ring s distribution 

For p = 2, S i  is commonly called the mean square radius of gyration and R; represents 
the mean square ‘length’ of the chain. 
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A recurrence relation method similar to that used for c, has also been developed to 
aid in computing the c,(r) (Martin and Watts 1971), and the calculations for the FCC 
lattice have been carried out to n = 10 (McKenzie 1973). No equivalent development 
has occurred for c,(s) or u,(s). By direct methods the moment Si,ch has been computed to 
n = 7 on the FCC (Domb and Hioe 1969) and somewhat further on other lattices. The 
only exact enumeration ring study is for the tetrahedral lattice, where S:,ri has been 
evaluated to n = 14 (Kumbar and Windwer 1969). 

The results described here form part of a more general study in which the self- 
avoiding chains and rings contain additional attractive or repulsive interactions between 
non-adjacent units that approach to nearest-neighbour distance. These interactions 
further complicate the enumeration problem ; for this reason no attempt has been made 
to look for recurrence relations which would be of help only in the non-interacting limit, 
and the enumerations were tackled by the direct approach. However, as will be 
outlined below, some degree of effort was invested into optimizing the computational 
algorithm, and the lattice symmetry was used to achieve a substantial reduction in the 
numbers of configurations which had to be generated. 

The symmetry reduction arises as follows. The first link of the chain or ring is fixed 
on any one of the (equivalent) lattice bonds. This produces an immediate twelve-fold 
reduction in counting effort for the FCC lattice. The second link can now be laid down in 
four non-equivalent ways out of the possible eleven. Finally, taking into account 
equivalent three-link configurations produces a further 25 % reduction for chains and 
50 %for rings. This procedure could be carried through to higher order but the additional 
savings no longer warrant the effort involved. Chains and rings were therefore generated 
using each of the non-equivalent three-link configurations as a starting point, and the 
final counts multiplied by the numbers of equivalent configurations of each type. 

The computer program used to generate chain and ring configurations is of course 
coded in assembler language. This ensures a much more effective utilization of the high- 
speed registers of the processing unit, and thus a reduction in the number of accesses 
to the comparatively slower main storage than would be achieved by a compiled 
program written in a higher-level language such as FORTRAN. 

A further marked improvement in computing speed derives from not constructing 
the configurations a single link at a time, but by usinga prepared list ofshort self-avoiding 
chains (in this case, of up to four links) to enable the addition of several links simul- 
taneously. Since some 30 % of four-link random chains on the FCC lattice fail to be self- 
avoiding, the use of lists means that many of the unsuccessful attempts at generating 
valid configurations will be avoided. The actual method of list construction, which 
involves pointers from outside the list and internal linkage between the list elements to 
permit rapid access to specific groups of stored chains, contributes very significantly to 
the program efficiency. The net result is a rate of generating self-avoiding configurations 
of approximately 8 x IO6 counts/min on the IBM 370/165 computer. This is double the 
rate reported for a program used in other work of a similar nature (Martin and Watts 
1971-the rate obtained was 106 counts/min on a machine operating at roughly a 
quarter of the speed). 

The chains and rings generated are grouped according to their s-values (and, for 
later use, also according to the numbers of nearest-neighbour pairs). The resulting 
c,(s) and U&) are used in the S-moment calculations. The c,(r) and the R moments of 
the chains were similarly determined. The moment values are listed in the appendix. 
Wherever possible the results were checked against previous work and complete 
agreement was found. 
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3. Analysis of results 

Extrapolation of the exact short chain and ring moments against n to obtain the limiting 
behaviour is made on the basis of the assumed form 

with M denoting the moments R or S.  The procedure is linearized by considering ratios of 
successive M,P : 

The exponents y p  are the primary targets of the analysis; estimates are found by fitting 
the known Of: to kth-degree polynomials in l/n, for k = 1 , 2 , .  . . . Use of larger values of 
k in principle allows for more accurate extrapolation, but since each estimate of y p  
requires a set of k + 1 successive 0:, the expected improvement in accuracy is countered 
by the increased dependence on smaller values of n. We have tacitly assumed that the 
finite-n corrections can be expressed in polynomial form ; corrections involving non- 
integral powers or logarithmic terms could well be present, but because the analysis is 
not particularly sensitive to the details such terms are only included if required by 
independent arguments (eg Sykes et al 1972a). For this reason, too, the values of bkp 
are not recorded here. 

Tables 1 and 2 contain the exponent estimates from the ring and chain S moments 
for p = 2 and 4, together with those from the chain R moments. The p = 2 results also 
appear in figure 1. The entries in table 1 indicate that y 2  = 1.20 for each of the three 
kinds of moments ; in the ring case the estimate appears more like 1.21-1.22, but reference 
to the k = 3 column suggests that the ring results are not as well converged as those of the 
chain, and the value 1.20 is still possible. 

Table 1. Extrapolated exponent estimates for the p = 2 moments obtained by fitting kth- 
degree polynomials in l / n  to the values of 0,2, as in equation (1) (cf figure 1). (The actual 
0; values appear in the k = 0 column.) 

YZ.Cl(S) 
9 1,1612 1.2111 1.2948 0.9060 

10 1,1663 1.2126 1,2184 1.0402 
11 1.1707 1.2143 1,2219 1.2313 

Y2,sh(S) 
6 1.0901 1,1916 1.2103 1.2087 
7 1,1056 1.1985 1.2156 1.2226 
8 1,1177 1.2026 1.2148 1.2136 

6 1,2122 1.2057 1.1937 1.1891 
7 1,2110 1.2040 1,1998 1.2080 
8 1.2100 1.2026 1.1983 1.1957 
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Table 2. Exponent estimates for the p = 4 moments. 

n yo  1 

7 4 . m  
9 2.5002 

10 2,4952 
I 1  2.49 12 

74.ch(S) 
6 2.4 169 
7 2.4219 
8 2,4256 

74.ch(R) 
6 2,7461 
7 2.6990 
8 2,6635 

2449 1 
2,4505 
2.45 1 1 

2.4486 
2.45 17 
2.45 1 5 

2.41 68 
2.4 166 
2.41 53 

2 

2,5527 
2.4563 
2.4536 

2.46 10 
2,4594 
2.4509 

2.4 I40 
2.4163 
2.41 12 

3 

1.7601 
2.23 14 
2,4462 

2,4476 
2,4573 
2.4368 

2.4004 
2,4193 
24028 

I , ” ,  
Chain (RI - - - - - - - - i - c  

I ’  

Ring (S &,:” I 

/ 

Iln 

Figure 1. The quantities 0; = n [ ( M i ,  ,/Mi)- I] plotted against l / n  for the three moment 
types. The linear extrapolations are based on the last two points only (cf table 1). 

In the case of y2,ch(R) the result 1.20 is well established for various three-dimensional 
lattices (most recently McKenzie 1973, Watts 1974). Monte Carlo analysis supports the 
claim = y 2 , J S )  = 1-20 (McCrackin et a1 1973). The only existing result for 
rings is a Monte Carlo estimate of y2,JS) = 1.18 (Kumbar and Windwer 1968), but 
sampling problems were encountered with the larger rings and, indeed, the generating 
method is biased in that it is not rings that are constructed, but ‘tadpoles’-rings with a 
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tail. The effect of the tail is to alter the mean s-distribution of the attached rings, although 
it is not evident whether the results are significantly modified. 

The results of table 2 suggest that y4 = 2 y 2 ,  and higher-moment results (not shown) 
that y z p  = p y 2 ,  although the degree of overestimation of y p  tends to increase with p .  A 
possible reason for this is that the higher-p moments depend increasingly strongly on the 
more extended configurations. The geometric constraints make it difficult to form 
highly compact configurations for small n, particularly in the case of the rings. The 
mean distribution of mass is consequently less compact, and the moment estimates 
increased. Larger-n results on the FCC or similar studies on other lattices ought to 
provide a more definite answer to the question of the relations between exponents. 

If it is true that -)p,ch(R) = Yp,ch(S) = Y ~ , ~ ~ ( S ) ,  it becomes meaningful to examine the 
limits of the moment ratios 

@: = R:.ch/S:,ch 4: = S:,cJS:,ri. 

These ratios are evaluated and fitted to polynomials in l/n as before. In the case of 4: 
we are unable to use the ring data for n > 9 because the corresponding chain results are 
unavailable. The results of the analyses appear in tables 3 and 4. There is a strong 
indication that the ratios approach finite limits (and by a circular argument this provides 
further evidence for the equality of the exponents). 

The limiting value of $: is seen to be 6.41 (table 3). A value of 6.46 was deduced 
from only seven terms (Domb and Hioe 1969) and the Monte Carlo estimate is 6.26 
(McCrackin et al 1973). The values reported for other three-dimensional lattices are of 
similar magnitude. For 4: we see that the limit is close to 1.9 (table 4). Work on the 
tetrahedral lattice yields a similar value. The fact that similar results for $: and 4; 
are obtained from different lattices suggests that, at least to a first-order approximation, 
the ratios depend only on dimensionality. If this is the case, the results should apply 
also to systems not constrained to a lattice (see Grishman 1973, Stellman and Gans 1972 
for opposing views on whether this is the case for exponents). With regard to the moment 
ratios for higher p ,  there are no results available for comparison. 

Table 3. Extrapolated estimates of the ratios $; = R:,ch ‘S;,,, . (The actual $,” values appear 
in the k = 0 column.) 

p = 2  
7 
8 
9 

p = 4  
7 
8 
9 

p = 6  
7 
8 
9 

5.795 1 
5.8705 
5,9299 

41.597 
42,820 
43.798 

332.03 
347.69 
360.36 

6.3838 
6.3983 
6 4 5 2  

50.989 
51.384 
51,615 

450.30 
457.30 
461.71 

6.4537 
6.441 7 
6,4296 

52.676 
52.568 
52,426 

478.48 
478.30 
477.17 

6,4375 
6.42 18 
6.4052 

52.68 1 
52.389 
52,142 

48 1.40 
477.99 
474.90 
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Table 4. Extrapolated estimates of the ratios 4; = S;,c,,p:,rL 

n 

p = 2  
7 1.9465 14297 1.8107 
8 1.9358 1,8610 1.9546 
9 1.9280 1.8649 1,8787 

p = 4  
7 4,1306 3,6946 3.7994 
8 4.0885 3.7935 4,0903 
9 4.0570 3,8049 3,8449 

p = 6  
7 9,5124 8.1953 9.1056 
8 9.3740 8.4049 9.0337 
9 9,2705 8.4430 8.5765 

For simple random chains and rings without excluded volume the limiting ratios for 
p = 2 are known exactly-$2 = 2 and IC/' = 6 (Zimm and Stockmayer 1949). Cluster 
expansion methods have been used to study the way in which the configurational 
properties of random chains and rings are affected by the introduction of excluded 
volume. Use of these methods leads to the perturbation expansions (Fixman 1955, 
Casassa 1965) 

R,'h = na2(1 +$z+ . . .) 
gh = &na2(l +#z + . . .) 
S2. ri  = 'na2(l 1 2  +&rz+ . . .) 

where the expansion parameter z = (3/2na2)3!2pn112, p( > O )  is the binary cluster integral 
which embodies the effect of the excluded volume, and a is the mean link length. 
From these expressions we obtain the moment ratio expansions 

1 1 / 2  = 6(1+0.057~.  . .) 
4' = 2( 1 - 0.295~ . . .), 

The changes in the ratios predicted by the cluster series, namely that i,h2 is increased 
and $' reduced when excluded volume is taken into account to first order, agree with the 
exact enumeration results. The cluster method does not appear to have been applied 
to compute higher moments. Unfortunately the present nature of the z expansion makes 
quantitative comparison with the exact enumeration results impossible, although it 
seems likely that the detailed study of the structure of the cluster series coefficients 
(Domb and Joyce 1972) will permit such comparison in due course. 
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Appendix. Moment values 
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4 6 
n 

K c h  

3 
4 
5 
6 
7 
8 
9 

S;.ch 
3 
4 
5 
6 
7 
8 
9 

S L ,  
5 
6 
7 
8 
9 

10 
11 
12 

3.495727 15.80342 83.90598 
4.907755 32.00980 250.3935 
6.39721 5 55.29974 580,5393 
7.949826 86,39937 11 50.030 
9,555960 125,9423 2045.532 

11.20919 174,5019 3363.989 
12.90455 232.6008 5211.923 

0.683761 0.505743 0,402135 
0.912000 0.909746 0,987284 
1.1 4950 1 1,456199 2,022973 
1.395446 2.1 58265 3.682270 
1.648974 3.027667 6.160730 
1.909412 4.075201 9,675354 
2,176180 5.310805 14,46326 

0,577143 
0,709794 
0.847 137 
0.986353 
1,128753 
1,274387 
1,423023 
1.57447 1 

0.3 3 7 600 
0.5 13474 
0.732986 
0.996 75 7 
1.309062 
1.672716 
2.090093 
2,563442 

0.200055 
0.378369 
0.647651 
1.032150 
1.560130 
2.261 765 
3.1 691 9 1 
4.3 1669 1 
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